在學習新知識的同時還要復習以前的舊知識,肯定會累,所以要注意勞逸結合。只有充沛的精力才能迎接新的挑戰(zhàn),才會有事半功倍的學習。下面是小編為大家整理的關于高二化學選修三知識點總結,希望對您有所幫助。歡迎大家閱讀參考學習!
(1)極性分子和非極性分子
<1>非極性分子:從整個分子看,分子里電荷的分布是對稱的。如:①只由非極性鍵構成的同種元素的雙原子分子:H2、Cl2、N2等;②只由極性鍵構成,空間構型對稱的多原子分子:CO2、CS2、BF3、CH4、CCl4等;③極性鍵非極性鍵都有的:CH2=CH2、CH≡CH。
<2>極性分子:整個分子電荷分布不對稱。如:①不同元素的雙原子分子如:HCl,HF等。②折線型分子,如H2O、H2S等。③三角錐形分子如NH3等。
(2)共價鍵的極性和分子極性的關系:
兩者研究對象不同,鍵的極性研究的是原子,而分子的極性研究的是分子本身;兩者研究的方向不同,鍵的極性研究的是共用電子對的偏離與偏向,而分子的極性研究的是分子中電荷分布是否均勻。非極性分子中,可能含有極性鍵,也可能含有非極性鍵,如二氧化碳、甲烷、四氯化碳、三氟化硼等只含有極性鍵,非金屬單質F2、N2、P4、S8等只含有非極性鍵,C2H6、C2H4、C2H2等既含有極性鍵又含有非極性鍵;極性分子中,一定含有極性鍵,可能含有非極性鍵,如HCl、H2S、H2O2等。
(3)分子極性的判斷方法
①單原子分子:分子中不存在化學鍵,故沒有極性分子或非極性分子之說,如He、Ne等。
②雙原子分子:若含極性鍵,就是極性分子,如HCl、HBr等;若含非極性鍵,就是非極性分子,如O2、I2等。
③以極性鍵結合的多原子分子,主要由分子中各鍵在空間的排列位置決定分子的極性。若分子中的電荷分布均勻,即排列位置對稱,則為非極性分子,如BF3、CH4等。若分子中的電荷分布不均勻,即排列位置不對稱,則為極性分子,如NH3、SO2等。
④根據(jù)ABn的中心原子A的最外層價電子是否全部參與形成了同樣的共價鍵。(或A是否達價)
(4)相似相溶原理
①相似相溶原理:極性分子易溶于極性溶劑,非極性分子易溶于非極性溶劑。
②相似相溶原理的適用范圍:“相似相溶”中“相似”指的是分子的極性相似。
③如果存在氫鍵,則溶劑和溶質之間的氫鍵作用力越大,溶解性越好。相反,無氫鍵相互作用的溶質在有氫鍵的水中的溶解度就比較小。
1、元素周期表的結構
元素在周期表中的位置由原子結構決定:原子核外的能層數(shù)決定元素所在的周期,原子的價電子總數(shù)決定元素所在的族。
(1)原子的電子層構型和周期的劃分
周期是指能層(電子層)相同,按照能級組電子數(shù)依次增多的順序排列的一行元素。即元素周期表中的一個橫行為一個周期,周期表共有七個周期。同周期元素從左到右(除稀有氣體外),元素的金屬性逐漸減弱,非金屬性逐漸增強。
(2)原子的電子構型和族的劃分
族是指價電子數(shù)相同(外圍電子排布相同),按照電子層數(shù)依次增加的順序排列的一列元素。即元素周期表中的一個列為一個族(第Ⅷ族除外)。共有十八個列,十六個族。同主族周期元素從上到下,元素的金屬性逐漸增強,非金屬性逐漸減弱。
(3)原子的電子構型和元素的分區(qū)
按電子排布可把周期表里的元素劃分成5個區(qū),分別為s區(qū)、p區(qū)、d區(qū)、f區(qū)和ds區(qū),除ds區(qū)外,區(qū)的名稱來自按構造原理最后填入電子的能級的符號。
2、元素周期律
元素的性質隨著核電荷數(shù)的遞增發(fā)生周期性的遞變,叫做元素周期律。元素周期律主要體現(xiàn)在核外電子排布、原子半徑、主要化合價、金屬性、非金屬性、第一電離能、電負性等的周期性變化。元素性質的周期性來源于原子外電子層構型的周期性。
(1)原子構造原理是電子排入軌道的順序,構造原理揭示了原子核外電子的能級分布。
(2)原子構造原理是書寫基態(tài)原子電子排布式的依據(jù),也是繪制基態(tài)原子軌道表示式的主要依據(jù)之一。
(3)不同能層的能級有交錯現(xiàn)象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。原子軌道的能量關系是:ns<(n-2)f<(n-1)d
(4)能級組序數(shù)對應著元素周期表的周期序數(shù),能級組原子軌道所容納電子數(shù)目對應著每個周期的元素數(shù)目。
根據(jù)構造原理,在多電子原子的電子排布中:各能層最多容納的電子數(shù)為2n2;最外層不超過8個電子;次外層不超過18個電子;倒數(shù)第三層不超過32個電子。
(5)基態(tài)和激發(fā)態(tài)
①基態(tài):最低能量狀態(tài)。處于最低能量狀態(tài)的原子稱為基態(tài)原子。
②激發(fā)態(tài):較高能量狀態(tài)(相對基態(tài)而言)?;鶓B(tài)原子的電子吸收能量后,電子躍遷至較高能級時的狀態(tài)。處于激發(fā)態(tài)的原子稱為激發(fā)態(tài)原子。
③原子光譜:不同元素的原子發(fā)生電子躍遷時會吸收(基態(tài)→激發(fā)態(tài))和放出(激發(fā)態(tài)→較低激發(fā)態(tài)或基態(tài))不同的能量(主要是光能),產(chǎn)生不同的光譜——原子光譜(吸收光譜和發(fā)射光譜)。利用光譜分析可以發(fā)現(xiàn)新元素或利用特征譜線鑒定元素。
1——原子半徑
(1)除第1周期外,其他周期元素(惰性氣體元素除外)的原子半徑隨原子序數(shù)的遞增而減小;
(2)同一族的元素從上到下,隨電子層數(shù)增多,原子半徑增大。
2——元素化合價
(1)除第1周期外,同周期從左到右,元素正價由堿金屬+1遞增到+7,非金屬元素負價由碳族-4遞增到-1(氟無正價,氧無+6價,除外);第一章物質結構元素周期律
1.原子結構:如:的質子數(shù)與質量數(shù),中子數(shù),電子數(shù)之間的關系
2.元素周期表和周期律
(1)元素周期表的結構
A.周期序數(shù)=電子層數(shù)
B.原子序數(shù)=質子數(shù)
C.主族序數(shù)=最外層電子數(shù)=元素的正價數(shù)
D.主族非金屬元素的負化合價數(shù)=8-主族序數(shù)
E.周期表結構
(2)元素周期律(重點)
A.元素的金屬性和非金屬性強弱的比較(難點)
a.單質與水或酸反應置換氫的難易或與氫化合的難易及氣態(tài)氫化物的穩(wěn)定性
b.價氧化物的水化物的堿性或酸性強弱
c.單質的還原性或氧化性的強弱
(注意:單質與相應離子的性質的變化規(guī)律相反)
B.元素性質隨周期和族的變化規(guī)律
a.同一周期,從左到右,元素的金屬性逐漸變弱
b.同一周期,從左到右,元素的非金屬性逐漸增強
c.同一主族,從上到下,元素的金屬性逐漸增強
d.同一主族,從上到下,元素的非金屬性逐漸減弱
C.第三周期元素的變化規(guī)律和堿金屬族和鹵族元素的變化規(guī)律(包括物理、化學性質)
D.微粒半徑大小的比較規(guī)律:
a.原子與原子b.原子與其離子c.電子層結構相同的離子
(3)元素周期律的應用(重難點)
A.“位,構,性”三者之間的關系
a.原子結構決定元素在元素周期表中的位置
b.原子結構決定元素的化學性質
c.以位置推測原子結構和元素性質
B.預測新元素及其性質
3.化學鍵(重點)
(1)離子鍵:
A.相關概念:
B.離子化合物:大多數(shù)鹽、強堿、典型金屬氧化物
C.離子化合物形成過程的電子式的表示(難點)
(AB,A2B,AB2,NaOH,Na2O2,NH4Cl,O22-,NH4+)
(2)共價鍵:
A.相關概念:
B.共價化合物:只有非金屬的化合物(除了銨鹽)
C.共價化合物形成過程的電子式的表示(難點)
(NH3,CH4,CO2,HClO,H2O2)
D極性鍵與非極性鍵
1.化學能與熱能
(1)化學反應中能量變化的主要原因:化學鍵的斷裂和形成
(2)化學反應吸收能量或放出能量的決定因素:反應物和生成物的總能量的相對大小
a.吸熱反應:反應物的總能量小于生成物的總能量
b.放熱反應:反應物的總能量大于生成物的總能量
(3)化學反應的一大特征:化學反應的過程中總是伴隨著能量變化,通常表現(xiàn)為熱量變化
練習:
氫氣在氧氣中燃燒產(chǎn)生藍色火焰,在反應中,破壞1molH-H鍵消耗的能量為Q1kJ,破壞1molO=O鍵消耗的能量為Q2kJ,形成1molH-O鍵釋放的能量為Q3kJ。下列關系式中正確的是(B)
A.2Q1+Q2>4Q3B.2Q1+Q2<4Q3
C.Q1+Q2
(4)常見的放熱反應:
A.所有燃燒反應;B.中和反應;C.大多數(shù)化合反應;D.活潑金屬跟水或酸反應;
E.物質的緩慢氧化
(5)常見的吸熱反應:
A.大多數(shù)分解反應;
氯化銨與八水合氫氧化鋇的反應。
(6)中和熱:(重點)
A.概念:稀的強酸與強堿發(fā)生中和反應生成1molH2O(液態(tài))時所釋放的熱量。
2.化學能與電能
(1)原電池(重點)
A.概念:
B.工作原理:
a.負極:失電子(化合價升高),發(fā)生氧化反應
b.正極:得電子(化合價降低),發(fā)生還原反應
C.原電池的構成條件:
關鍵是能自發(fā)進行的氧化還原反應能形成原電池
a.有兩種活潑性不同的金屬或金屬與非金屬導體作電極
b.電極均插入同一電解質溶液
c.兩電極相連(直接或間接)形成閉合回路
D.原電池正、負極的判斷:
a.負極:電子流出的電極(較活潑的金屬),金屬化合價升高
b.正極:電子流入的電極(較不活潑的金屬、石墨等):元素化合價降低
E.金屬活潑性的判斷:
a.金屬活動性順序表
b.原電池的負極(電子流出的電極,質量減少的電極)的金屬更活潑;
c.原電池的正極(電子流入的電極,質量不變或增加的電極,冒氣泡的電極)為較不活潑金屬
F.原電池的電極反應:(難點)
a.負極反應:X-ne=Xn-
b.正極反應:溶液中的陽離子得電子的還原反應
(2)原電池的設計:(難點)
根據(jù)電池反應設計原電池:(三部分+導線)
A.負極為失電子的金屬(即化合價升高的物質)
B.正極為比負極不活潑的金屬或石墨
C.電解質溶液含有反應中得電子的陽離子(即化合價降低的物質)
(3)金屬的電化學腐蝕
A.不純的金屬(或合金)在電解質溶液中的腐蝕,關鍵形成了原電池,加速了金屬腐蝕
B.金屬腐蝕的防護:
a.改變金屬內部組成結構,可以增強金屬耐腐蝕的能力。如:不銹鋼。
b.在金屬表面覆蓋一層保護層,以斷絕金屬與外界物質接觸,達到耐腐蝕的效果。(油脂、油漆、搪瓷、塑料、電鍍金屬、氧化成致密的氧化膜)
c.電化學保護法:
犧牲活潑金屬保護法,外加電流保護法
(4)發(fā)展中的化學電源
A.干電池(鋅錳電池)
a.負極:Zn-2e-=Zn2+
b.參與正極反應的是MnO2和NH4+
B.充電電池
a.鉛蓄電池:
鉛蓄電池充電和放電的總化學方程式
放電時電極反應:
負極:Pb+SO42--2e-=PbSO4
正極:PbO2+4H++SO42-+2e-=PbSO4+2H2O
b.氫氧燃料電池:它是一種高效、不污染環(huán)境的發(fā)電裝置。它的電極材料一般為活性電極,具有很強的催化活性,如鉑電極,活性炭電極等。
總反應:2H2+O2=2H2O
電極反應為(電解質溶液為KOH溶液)
負極:2H2+4OH--4e-→4H2O
正極:O2+2H2O+4e-→4OH-
3.化學反應速率與限度
(1)化學反應速率
A.化學反應速率的概念:
B.計算(重點)
a.簡單計算
b.已知物質的量n的變化或者質量m的變化,轉化成物質的量濃度c的變化后再求反應速率v
c.化學反應速率之比=化學計量數(shù)之比,據(jù)此計算:
已知反應方程和某物質表示的反應速率,求另一物質表示的反應速率;
已知反應中各物質表示的反應速率之比或△C之比,求反應方程。
d.比較不同條件下同一反應的反應速率
關鍵:找同一參照物,比較同一物質表示的速率(即把其他的物質表示的反應速率轉化成同一物質表示的反應速率)
(2)影響化學反應速率的因素(重點)
A.決定化學反應速率的主要因素:反應物自身的性質(內因)
B.外因:
a.濃度越大,反應速率越快
b.升高溫度(任何反應,無論吸熱還是放熱),加快反應速率
c.催化劑一般加快反應速率
d.有氣體參加的反應,增大壓強,反應速率加快
e.固體表面積越大,反應速率越快
f.光、反應物的狀態(tài)、溶劑等
(3)化學反應的限度
A.可逆反應的概念和特點
B.絕大多數(shù)化學反應都有可逆性,只是不同的化學反應的限度不同;相同的化學反應,不同的條件下其限度也可能不同
a.化學反應限度的概念:
一定條件下,當一個可逆反應進行到正反應和逆反應的速率相等,反應物和生成物的濃度不再改變,達到表面上靜止的一種“平衡狀態(tài)”,這種狀態(tài)稱為化學平衡狀態(tài),簡稱化學平衡,這就是可逆反應所能達到的限度。
b.化學平衡的曲線:
c.可逆反應達到平衡狀態(tài)的標志:
反應混合物中各組分濃度保持不變
↓
正反應速率=逆反應速率
↓
消耗A的速率=生成A的速率
d.怎樣判斷一個反應是否達到平衡:
(1)正反應速率與逆反應速率相等;(2)反應物與生成物濃度不再改變;
(3)混合體系中各組分的質量分數(shù)不再發(fā)生變化;
(4)條件變,反應所能達到的限度發(fā)生變化。
化學平衡的特點:逆、等、動、定、變、同。
【典型例題】
例1.在密閉容器中充入SO2和18O2,在一定條件下開始反應,在達到平衡時,18O存在于(D)
A.只存在于氧氣中
B.只存在于O2和SO3中
C.只存在于SO2和SO3中
D.SO2、SO3、O2中都有可能存在
例2.下列各項中,可以說明2HIH2+I2(g)已經(jīng)達到平衡狀態(tài)的是(BDE)
A.單位時間內,生成nmolH2的同時生成nmolHI
B.一個H—H鍵斷裂的同時,有2個H—I鍵斷裂
C.溫度和體積一定時,容器內壓強不再變化
D.溫度和體積一定時,某一生成物濃度不再變化
E.溫度和體積一定時,混合氣體的顏色不再變化
F.條件一定,混合氣體的平均相對分子質量不再變化
化學平衡移動原因:v正≠v逆
v正>v逆正向v正.
濃度:其他條件不變,增大反應物濃度或減小生成物濃度,正向移動反之
壓強:其他條件不變,對于反應前后氣體,總體積發(fā)生變化的反應,增大壓強,平衡向氣體體積縮小的方向移動,反之…
溫度:其他條件不變,溫度升高,平衡向吸熱方向移動反之…
催化劑:縮短到達平衡的時間,但平衡的移動無影響
勒沙特列原理:如果改變影響化學平衡的一個條件,平衡將向著減弱這種改變的方向發(fā)生移動。